منابع پایان نامه درباره توزیع شده، کانون توجه، نفوذپذیری

پلیمری با ساختار ورقه ورقه شده هستند، اگرچه اندکی ساختار میان لایهای نیز قابل مشاهده است. همچنین مدول نانوکامپوزیت تهیه شده با 5/0% وزنی از خاک رس دوبار اصلاح شده با مقدار 07/1 GPa درمقایسه با مدول نانوکامپوزیت حاوی 5/0% از خاک رس یکبار اصلاح شده KT با مقدارGPa 86/0افزایش چشمگیری را نشان داد. علاوه بر این، نتایج آزمون حرارتی دینامیکی – مکانیکی مربوط به نانوکامپوزیت حاوی 5/0%وزنی از خاک رس دوبار اصلاح شده تقریبا معادل نتایج مربوط به نانوکامپوزیت تهیه شده با 3% وزنی از خاک رسKT است. درنتیجه با درصدکمتریازخاکرسدوباراصلاحشدهمیتوانبهخواصمکانیکیبالاتریدستیافت.
کلیدواژه : پلی متیل متاکریلات، نانو ذرات خاک رس ، نانوکامپوزیت، پلیمریزاسیون سوسپانسیونی، درجا
فصل اول
مقدمه
در این فصل به کلیاتی در مورد بیان مسئله، اهمیت و اهداف این پژوهش پرداخته خواهد شد.
بیان مسئله
نانو کامپوزیت ها از توزیع یا پراکنش ذرات نانو در یک ماتریس تشکیل می شوند. ماتریس می تواند یک جزئی یا چند جزئی باشد و ممکن است حاوي موادي باشد که خاصیت هایي همچون تقویت کنندگی، چقرمگی و هدایت کنندگی را به سیستم وارد کند.
واژه نانوکامپوزیت، به کامپوزیت هایی که حداقل یکی از ابعاد فاز پراکنده در آن در مقیاس نانو〖 (10〗^(-9) m ) باشد، اطلاق می شود. نانو کامپوزیت ها براساس ابعاد ذرات فاز پراکنده به سه دسته تقسیم می شوند :
هر سه بعد فاز پراکنده در مقیاس نانومتری هستند. به عنوان مثال ذرات سیلیکای کروی به دست آمده با روش سل– ژل یا پلیمریزاسیون درجا از این دسته اند.
دو بعد از فاز پراکنده در مقیاس نانومتری هستند و بعد سوم بزرگ تر از 100 نانومتر است. در این حالت یک ساختار کشیده شده ، ایجاد می شود که نانو لوله ها از این دسته هستند. تقویت انواع زمینه های فلزی، سرامیکی و پلیمری توسط نانو لوله ها امکان پذیر است.
فاز پراکنده فقط دارای یک بعد در مقیاس نانو متری است. در این مورد پرکننده به صورت ورقه هایی با ضخامت یک یا چند نانو متر و با طول صد ها یا هزاران نانو متر می باشد. خاک رس در بین سیلیکات های لایه ای بیشتر مورد توجه قرار گرفته است. زیرا خاک رس اولیه بیشتر دردسترس است و دانشمندان اطلاعات دقیق تری در زمینه ساختار و ظرفیت اصلاح پذیری آنها دارند .
نانو کامپوزیت های پلیمری1 در حال حاضر به صورت دسته جدیدي از مواد پراهمیت مطرح شدهاند. این خانواده ازکامپوزیت ها متشکل از زمینه ی پلیمری و پرکننده معدنی هستند. نانو کامپوزیت های پلیمری غالبا از طریق امتزاج با پلیمرها و یا پلیمریزاسیون مونومرها در فاصله میان لایه های نانو ذرات بدست میآیند.کارایی این مواد با به کارگیری 2 تا 7 درصد وزنی از مواد تقویت کننده، با کامپوزیت هاي معمولی با 30 تا50 درصد وزنی از مواد تقویت کننده، برابري می کند.
به این نکته باید توجه کرد که استفاده بالاي پرکننده در کامپوزیت هاي معمولی باعث افزایش نامطلوب دانستیه و ایجاد قطعات سنگین، کاهش جریان مذاب و افزایش شکنندگی می شود. علاوه بر این کامپوزیت هاي معمولی کدر و غیر شفاف هستند. این مشکلات در نانو کامپوزیت هاکمتر دیده شده و تقریبا برطرف می شوند.
مهمترین مصرف نانو کامپوزیت هاي پلیمري در صنعت حمل و نقل، بسته بندي، ساختمان، سازه های الکترونیکی، وسایل برقی، فوتونیکی و حسگرها است. این کاربردها خواص مغناطیسی اصلاح شده، قابلیت عبور الکتریسته یا نور و خاصیت زیست سازگاري را در بر می گیرد. رفتار نانو کامپوزیت هاي پلیمری مانند مواد متشکل از یک جزء یا مواد یک فازي است. نانو کامپوزیت هاي پلیمري شفاف اند و دانسیته پایین از خود نشان می دهند.آنها را می توان به سادگی با افزودنی ها اصلاح کرد[1].
نانو کامپوزیت هاي پلیمري به سه روش تهیه می شوندکه عبارتند از:
روش محلولی
روش اختلاط مذاب
روش پلیمریزاسیون درجا
در چند دهه اخیر، نانو کامپوزیت هاي پلیمر/ سیلیکات لایه اي کانون توجه محققین بسیاري بوده است. نسبت منظر بالاي صفحات میان لایه ای شده و یا ورقه ورقه شده، پتانسیل لازم براي بهبود قابل توجه تعداد زیادي از خواص پلیمرها را با به کارگیري مقدار اندکی نانو خاك رس فراهم می کند. یکی از مزیت های استفاده از نانو ذرات، وزن کمتر قطعه نهایی تهیه شده با نانو سیلیکات هاي لایه اي نسبت به انواع معمولی آن می باشد که دلیل آن درصد پایین استفاده از این نانوذرات است. به طور کلی خاک های رس اصلاح شده با نسبت 1:3 جانشین موادی همچون تالک یا پرکنندههای های شیشهای شده اند. به طورمثال، 5 درصد وزنی از خاکهای رس می توانند جایگزین15 درصدوزنی از پرکننده هایی همچون کربنات کلسیم بشوند که باعث ارتقای خواص مکانیکی محصول نهایی می گردند[2].
مزیت عمده دیگر نانوکامپوزیت هاي سیلیکاتی نفوذناپذیري آنها در برابر گازها است. زمانی که صفحات خاك رس بخوبی توزیع شده و آرایش یافته باشند به مقدار قابل توجهی نفوذپذیری را کاهش میدهند. همچنین موجب افزایش قابل توجه مقاومت اشتعال پذیري در پلیمر می شوند.
سیلیکات های لایه ای جزء نانوذرات مهمی به حساب می آیند که علاوه بر بهبود خواص مکانیکی[3]، پایداری حرارتی[4] ، پایداری شیمیایی و خواص الکتریکی نمونهها را افزایش می دهند. اما مشابه سایر نانوذرات، وجود جاذبه ی واندروالس در بین آنها، باعث به هم چسبیدن و تجمع سیلیکات های لایه ای میشود که این امر مانع از پراکندگی مطلوب نانوذرات در بستر پلیمری می گردد. در نتیجه، رسیدن به خواص منحصر به فرد سیلیکات های لایهای را با مشکل مواجه میکند. پس می توان به مشکل اصلی فرآیند تهیه نانو کامپوزیت ها، عدم توزیع یکنواخت فاز تقویت کننده در بستر پلیمری و تجمع ذرات، اشارهکردکه سبب افزایش انرژی سطحی ذرات می شود وخواص مکانیکی نانو کامپوزیت ها را کاهش می دهد[5].
اهمیت و اهداف پروژه
آزمایشهای متعدد در زمینه بهبود خواص نانوکامپوزیت های پلیمر / خاک رس نشان داده است که برهم کنش الکتروستاتیک ضعیف در فصل مشترک خاک رس معدنی آب دوست و ماده آلی آب گریز، تاثیرات منفی بر استحکام مکانیکی نهایی نانو کامپوزیت های پلیمر / خاک رس می گذارد. علت وجود اين نقص، ناسازگاري ذرات خاك رس آب دوست با ماده آلي آب گریز است. دليل ناسازگاري بين دو ماده فوق الذكر وجود گروهاي هيدروكسيلي برروي لبه و همچنين سطوح داخلي و خارجي صفحات خاك رس عنوان مي شود[6].
به منظور بهبود پايداري پراكنش نانوذرات در محيط آلي و يا ماتريسهای پليمري، لازم است كه با اصلاح سطح ذرات از طريق مولكولهاي فعال سطحی و يا ساير اصلاح كننده ها، ميان ماتريس پليمري و نانوذرات سازگاري ايجاد نمود. عموماً، نانو ذرات خاك رس به روش تبادل يوني و با استفاده ازمواد آلی موسوم به نمك هاي آلكيل آمونيوم نوع چهارم اصلاح مي شوند. با كمك روش تبادل يوني تنها مي توان سطوح داخلي وخارجي نانو ذرات را اصلاح كرد و اين بدين معناست كه هنوزگروه هاي هيدروكسيل برروي لبه ها و بعضاً بر سطوح نانو ذرات باقي مي مانند. بنابراين، براي ايجاد سازگاري كامل بين دو ماده آب دوست و آب گریز بايد لبه هاي ذرات خاك رس نيز در معرض اصلاح قرار گيرند. در غير اين صورت، پديده خوشه اي شدن و عدم ورقه اي شدن ذرات خاك رس معدني در ماتريس پليمر ي مشاهده می شود. درواقع ، نانوذرات به دنبال پراكنش نامناسب در ماتريس پليمري، تمايل زيادي به كلوخه شدن داشته و موجب افت خواص نوري و مكانيكي نانوكامپوزيت مي گردند.
تلاش های بسیاری در جهت پراکنده کردن سیلیکات های لایه ای در ماتریس پلیمری صورت گرفته است که از آن جمله می توان به استفاده از مواد فعال سطحی مناسب و یا ایجاد گروه های عاملی روی سطح اشاره کردکه با ایجاد پیوندهای کووالانسی با ماتریس پلیمری، سبب بهبود قابل توجه در خواص پلیمر میشود [7]. درنهایت بهبود خواص نانوكامپوزيت هاي پليمري همواره مورد توجه بوده است. از آنجاييكه دليل اصلي افزودن ذرات معدني به پليمرها بهبود خواص مكانيكي آنها است، بررسي خواص مكانيكي نانوكامپوزيت هاي پليمري اهميت ويژه اي دارد. در سال های اخیر، انواع خاک های رس اصلاح شده به طورگسترده ای در زمینه تولید نانوکامپوزیت های پلیمری مورد استفاده قرارگرفته اند.
ازاوایل دهه اخیر، علاوه بر سطوح داخلی و خارجی صفحات خاک رس که با روش تبادل یونی اصلاح می شوند، لبه ها و سطوح شکسته صفحات خاک رس نیز به منظور اصلاح مجدد مورد بررسی و آزمایش قرار گرفتند. محققان به دنبال روش های جدیدی هستند تا بتوانند با استفاده از اصلاح مجدد و یا عاملدارکردن خاک های رس یکبار اصلاح شده از طریق گروه های سیلانی و با روش پیوند زدن سیلان بر لبه ها و سطوح دارای گروه های هیدروکسیل، به صورتی پربازده و موثر سازگاری نانو ذرات اصلاح شده با پلیمر مورد نظررا افزایش دهند [8].
تحقیق حاضر با هدف بررسی تاثیر اصلاح مجدد خاک رس آلی شده با استفاده از اصلاح کنندههای سیلانی بر مشخصات ساختاری خاک رس و همچنین تهیه و بررسی خواص نانوکامپوزیتهای پلیمری حاوی خاکهای رس دوبار اصلاح شده انجام شده است . در ادامه، ابتدا در فصل دوم، مونومر مورد استفاده و خاک رس موردنظر در این پژوهش معرفی میشوند. سپس، برخی مفاهیم پایه و کلیاتی در مورد روش های تهیه نانوکامپوزیت هاي پلیمري و ساختارهای موجود بیان می گردد. در انتهاي فصل مروري بر کارها و مطالعات انجام شده در مورد چگونگی اصلاح صفحات خاک رس به روش های گوناگون، سنتز نانوکامپوزیت های پلیمر / خاک رس اصلاح شده و بررسی خواص شیمیایی، حرارتی و مکانیکی صورت می گیرد. در فصل سوم ، مواد مصرفی، روش ها ودستگاههای به كارگرفته شده معرفی گردیده و در فصل چهارم به بحث و بررسی نتایج آزمون ها و مشاهدات پرداخته می شود. در فصل پنجم هم نتایج به دست آمده بیان می شوند و جهت ادامه تحقیقات در این زمینه پیشنهاداتی ارائه می گردند.
فصل دوم
مروری بر مطالعات انجام شده
پلی متیل متاکریلات2با فرمول شیمیایی (〖〖C_5 O〗_2 H〗_8 )_nیکی از پلیمرهای معروف و شناخته شده ای است که با 92 درصد قابلیت گذردهی نور و رنگ پذیری مناسب، که زمان و تغییرات جوی بر آن بی تاثیر است، رقیبی جدی برای شیشه در بسیاری از کاربردها محسوب می شود. در میان پلاستیک های شفاف، نسبت به اشعه ماوراء بنفش، رطوبت و دیگر اثرات محیطی از همه مقاوم تر است. همچنین می توان به مقاومت ضربه ای بالا (در حدود 5 برابر شیشه ) ، پایداری رنگ و وزن کم آن اشاره کرد .
تهیه مونومرمتیل متاکریلات، از طریق یک فرایند دو مرحله ای انجام می گیرد. ابتدا استون و هیدروژن سیانید با هم واکنش می دهند تا استون سیانوهیدرین به دست آید. سپس این ترکیب در حضور اسید سولفوریک غلیظ با متانول حرارت داده می شود تا مونومر متیل متاکریلات بدست آید. مونومرهای اکریلیک از طریق فرایندهای پلیمریزاسیون رادیکال آزاد که معمولا به وسیله آغازگرهای پروکسیدی شروع می شوند پلیمریزه می گردندکه پلی متیل متاکریلات نیز به این روش حاصل می شود. یک آغازگر، رادیکالی فعال راحاصل می کندکه دردماهای بالاتر موجب پیشرفت واکنشی می گردد که بسیار شدید وگرمازاست، به طوری که گرمای آزاد شده بایستی به نحوی از سیستم خارج و مهار گردد.
پلی متیل متاکریلات به عنوان یک ترمو پلاستیک (پلاستیک گرما نرم) شناخته می شود. از نام های دیگر آن می توان به آکریلیت (Acrylite)، گلاس فلکس (Glassflex)، لوسیت (Lucite)، پلکسی گلاس (Plexiglass)، پرسپکس (Perspex)، آلتوگلاس (Altuglass)، اپتیکس (Optix) اشاره کرد.
این ماده درون حلال هایی نظیر تولوئن، بنزن، تترا هیدروفوران (THF) و… قابل حل است. همچنین نقطه ذوب متیل متاکریلات د

تکه های دیگری از این پایان نامه را می توانید

در شماره بندی فوق بخوانید

متن کامل پایان نامه ها در سایت homatez.com موجود است

You may also like...

Add a Comment